Project Abstract
Fungi and their counterparts, the oomycetes, play an important role in the cycle of life as they decompose dead and decaying organic matter. Through this crucial role in the nutrient cycle they influence the well-being of human populations on a large scale. These benign fungi and oomycetes however, are in stark contrast to their other relatives, who, in search for food, grow as pathogenic species on both plants and animals. These particular species can have detrimental effects on human health and affairs, either directly through infection or indirectly through loss of crop and other species. The ability to locate target plants and animals, and grow invasively into them, are key processes in the pathogenicity of these organisms. For example, spores of certain fungi use electric fields present in roots of trees to detect the presence of these and navigate towards them. Once at the target, spores of pathogenic fungi and oomycetes begin to grow structures in a process called germination, which help them physically invade the target. These structures ultimately develop into long tubular cells called hyphae, which generate protrusive forces at their tips to literally push into the tissue of the target. In the worst case this invasion and subsequent feeding on the target will lead to the demise of the plant or animal. In New Zealand, pathogenic oomycete and fungi are receiving widespread coverage in the popular press with the spread of Kauri dieback and Myrtle rust. The aim of this project is thus to establish the antifungal properties of new compounds, plants and other species and inform the development of treatments based on these. To do so, miniaturized sensors and actuators will be used to extend our understanding of the mechanisms that enable fungi and oomycetes to find targets and physically invade them.