Researcher Summary
My research is geared towards providing structural information about transient, short-lived, species. Research areas include the structure determination of transient species and stable radicals.
Transient species are generated using flash vacuum pyrolysis (FVP) techniques and analysed using gas electron diffraction (GED). The methodologies of FVP and GED have been combined in a new inlet system, and the species for investigation are passed into the diffraction chamber where structural data is collected. Very-high temperatures are required for this work, as the transient species are usually generated at temperatures between 500 and 900 K.
Generating stable radicals from sterically loaded systems is in the early stages of experimental investigation. The systems Z2R4 / ZR2 [Z = P or As, R = CH(SiMe3)2] provided the first known examples of molecules with relatively normal strong Z-Z bonds, which required no additional energy to break. The driving force for dissociation is the conformational change, which allows relaxation of the steric strain upon dissociation. This led to the term 'jack-in-the-box' molecules being applied to these systems. Other systems have been predicted to behave in this manner, although no experimental work has been carried out on them. Work is currently underway to examine the process of dissociation in other symmetric and also asymmetric systems using experimental and theoretical methods.